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Functional testing methods

Every organization deals with software bugs and logic 
issues. So, naturally, every organization has tools and 
methods to test their development and production 
codebases. Most of these enterprises follow cost-efficient 
and time-tested approaches that optimize quality and 
increase accuracy.
Among these testing methods are traditional script-based and model-based 
functional testing.

Script-based testing requires technical testers (automation engineers or 
developers) to follow a step-by-step walkthrough to test a given test case or 
functionality. Testers need to define test cases in advance with procedures 
describing the expected output. With scripted testing, a tester knows what to 
expect from each input and follows instructions to test and pass each feature.

Model-based testing (MBT) involves test cases generated from production 
models of system requirements. MBT allows technical testers to carry out 
tests independent of algorithmic design and development. Additionally, MBT 
helps automate business and software requirements for analysts and quality 
assurance (QA) professionals beyond traditional stochastic and heuristic 
methods.

But which of these testing paradigms is best? In this paper, we will:

•	 Explore the strengths and challenges of each.

•	 Show the value of a hybrid testing approach.

•	 Look at how OpenText™ Functional Testing can help you reach this hybrid 
approach.

Traditional script-
based and model-
based testing 
differ in how 
they’re applied in 
organizations and 
how they improve 
technical testers’ 
efficiency.

https://www.opentext.com/products/functional-testing
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Script-based versus model-based 
Traditional script-based and model-based testing differ in how they’re 
applied in organizations and how they improve technical testers’ efficiency.

Since scripted testing is a conventional approach, you need to define test 
cases in advance. Additionally, all requirements and specifications must 
be completed before testing. Script-based testing relies heavily on the 
knowledge and expertise of testers since they need to know what to expect 
at the end of the testing cycle.

On the other hand, model-based testing is a lightweight, automated method 
for testing hardware and software requirements. With MBT, you validate the 
system against predictions made by a model.

MBT is more part of the software development process than traditional 
scripting testing. It requires a clear goal and equitable expenditure to make an 
accurate and maintainable testing case. MBT allows your teams to focus on 
how to construct testable applications and design models based on real-world 
relevance from the user’s point of view. Plus, it minimizes script development 
and maintenance.

However, there are challenges with MBT, including limited control over testing, 
implementation complexities, and lack of complete insight.

Because forecast models do most of the evaluations, it’s difficult to control 
the behavior and expected output. Why? Predictions are based on system 
requirements independent of the algorithms used in testing.

MBT also uses models to evaluate various system requirements. This process 
is complex when an organization does not have scalable architecture and the 
proper tooling infrastructure for test maintenance and coverage.

Coming up with clear insights from MBT test coverage, fixing bugs, and 
building models for the application under test can be challenging for complex 
models running on unreliable architectures. You’ll need to prepare for these 
challenges to get the most out of MBT.

MBT and script-based testing allow you to automate various test cases across 
your system architecture, easing test coverage management. With both testing 
paradigms, it’s easy to get detailed test results, giving insight into which inputs 
and test cases you can improve and how.

However, both of these approaches have blind spots. Let’s go through some of 
the advantages and disadvantages.

With script-based 
testing, you can:
•	 Easily manage test 

coverage.

•	 Repeat tests several 
times with predefined 
test scripts.

•	 Get detailed results of 
each executed test case.

•	 Effectively test software 
or system requirements 
in sequence.
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Scripted testing
With script-based testing, you can:

•	 Easily manage test coverage.

•	 Repeat tests several times with predefined test scripts.

•	 Get detailed results of each executed test case.

•	 Effectively test software or system requirements in sequence.

•	 On the other hand, scripted testing isn’t ideal when:

•	 Dealing with changing requirements.

•	 Working within time constraints—this method provides feedback slowly.

•	 Trying to catch bugs and issues early in the testing cycle.

Model-based testing
MBT offers some unique advantages. These can include:

•	 Improved test coverage.

•	 Increased accuracy and visibility.

•	 More collaboration among your teams.

The disadvantages to MBT are:

•	 Steep learning curve for technical testers.

•	 Generated models and tests sometimes miss bugs.

•	 Scaling issues with complex models.

Hybrid testing
MBT and script-based testing both have tradeoffs.

Scripted testing focuses on achieving the result but isn’t concerned about the 
technical tester’s satisfaction. Additionally, scripted testing doesn’t cover most 
of the real-world problems users might face.

But MBT isn’t a silver bullet. While it can improve application integrity, it’s 
challenging to implement.

Why not do both? A hybrid approach is the best way to maintain application 
integrity. Hybrid testing combines the power of traditional scripted testing with 
automated model-based functional testing. Both methods ensure that your 
system requirements are tested against all bugs and any hidden issues.

OpenText Functional Testing is perfect for hybrid testing. It boasts scalable, 
intelligent, automated tests that cover your enterprise’s web, mobile, desktop, 
mainframe, and composite applications.

MBT offers some 
unique advantages. 
These can include:
•	 Improved test coverage.

•	 Increased accuracy and 
visibility.

•	 More collaboration 
among your teams.

https://www.opentext.com/products/functional-testing
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Next steps
Testing is an integral part of the software development process. It requires 
sophisticated tools to ensure that your system requirements are tested against 
all possible cases.

Remember, using either scripted or model-based testing will only get you so 
far. You need a hybrid approach for effective all-around testing.

OpenText Functional Testing provides you with a hybrid model that captures 
the best parts of both script-based and model-based testing—without leaving 
blind spots that can impact your application’s integrity.

Testing can be tedious, complex, and difficult to carry out when it involves 
many systems in an organization. To reduce these complexities, visit our 
OpenText Functional Testing page to learn how to better plan your business 
testing strategy.

Learn more.

Resources
OpenText CEO Mark 
Barrenechea’s blog >

https://www.opentext.com/products/functional-testing
https://www.opentext.com/products/functional-testing-automation-solutions
https://blogs.opentext.com/category/ceo-blog/
https://blogs.opentext.com/category/ceo-blog/
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