
WHITE PAPER

Script-based versus
model-based functional
testing

OpenText | Script-based versus model based functional testing 2/6

Contents

Functional testing methods� 3

Script-based versus model-based � 4

Scripted testing� 5

Model-based testing� 5

Hybrid testing� 5

Next steps� 6

OpenText | Script-based versus model based functional testing 3/6

Functional testing methods

Every organization deals with software bugs and logic
issues. So, naturally, every organization has tools and
methods to test their development and production
codebases. Most of these enterprises follow cost-efficient
and time-tested approaches that optimize quality and
increase accuracy.
Among these testing methods are traditional script-based and model-based
functional testing.

Script-based testing requires technical testers (automation engineers or
developers) to follow a step-by-step walkthrough to test a given test case or
functionality. Testers need to define test cases in advance with procedures
describing the expected output. With scripted testing, a tester knows what to
expect from each input and follows instructions to test and pass each feature.

Model-based testing (MBT) involves test cases generated from production
models of system requirements. MBT allows technical testers to carry out
tests independent of algorithmic design and development. Additionally, MBT
helps automate business and software requirements for analysts and quality
assurance (QA) professionals beyond traditional stochastic and heuristic
methods.

But which of these testing paradigms is best? In this paper, we will:

•	 Explore the strengths and challenges of each.

•	 Show the value of a hybrid testing approach.

•	 Look at how OpenText™ Functional Testing can help you reach this hybrid
approach.

Traditional script-
based and model-
based testing
differ in how
they’re applied in
organizations and
how they improve
technical testers’
efficiency.

https://www.opentext.com/products/functional-testing

OpenText | Script-based versus model based functional testing 4/6

Script-based versus model-based
Traditional script-based and model-based testing differ in how they’re
applied in organizations and how they improve technical testers’ efficiency.

Since scripted testing is a conventional approach, you need to define test
cases in advance. Additionally, all requirements and specifications must
be completed before testing. Script-based testing relies heavily on the
knowledge and expertise of testers since they need to know what to expect
at the end of the testing cycle.

On the other hand, model-based testing is a lightweight, automated method
for testing hardware and software requirements. With MBT, you validate the
system against predictions made by a model.

MBT is more part of the software development process than traditional
scripting testing. It requires a clear goal and equitable expenditure to make an
accurate and maintainable testing case. MBT allows your teams to focus on
how to construct testable applications and design models based on real-world
relevance from the user’s point of view. Plus, it minimizes script development
and maintenance.

However, there are challenges with MBT, including limited control over testing,
implementation complexities, and lack of complete insight.

Because forecast models do most of the evaluations, it’s difficult to control
the behavior and expected output. Why? Predictions are based on system
requirements independent of the algorithms used in testing.

MBT also uses models to evaluate various system requirements. This process
is complex when an organization does not have scalable architecture and the
proper tooling infrastructure for test maintenance and coverage.

Coming up with clear insights from MBT test coverage, fixing bugs, and
building models for the application under test can be challenging for complex
models running on unreliable architectures. You’ll need to prepare for these
challenges to get the most out of MBT.

MBT and script-based testing allow you to automate various test cases across
your system architecture, easing test coverage management. With both testing
paradigms, it’s easy to get detailed test results, giving insight into which inputs
and test cases you can improve and how.

However, both of these approaches have blind spots. Let’s go through some of
the advantages and disadvantages.

With script-based
testing, you can:
•	 Easily manage test

coverage.

•	 Repeat tests several
times with predefined
test scripts.

•	 Get detailed results of
each executed test case.

•	 Effectively test software
or system requirements
in sequence.

OpenText | Script-based versus model based functional testing 5/6

Scripted testing
With script-based testing, you can:

•	 Easily manage test coverage.

•	 Repeat tests several times with predefined test scripts.

•	 Get detailed results of each executed test case.

•	 Effectively test software or system requirements in sequence.

•	 On the other hand, scripted testing isn’t ideal when:

•	 Dealing with changing requirements.

•	 Working within time constraints—this method provides feedback slowly.

•	 Trying to catch bugs and issues early in the testing cycle.

Model-based testing
MBT offers some unique advantages. These can include:

•	 Improved test coverage.

•	 Increased accuracy and visibility.

•	 More collaboration among your teams.

The disadvantages to MBT are:

•	 Steep learning curve for technical testers.

•	 Generated models and tests sometimes miss bugs.

•	 Scaling issues with complex models.

Hybrid testing
MBT and script-based testing both have tradeoffs.

Scripted testing focuses on achieving the result but isn’t concerned about the
technical tester’s satisfaction. Additionally, scripted testing doesn’t cover most
of the real-world problems users might face.

But MBT isn’t a silver bullet. While it can improve application integrity, it’s
challenging to implement.

Why not do both? A hybrid approach is the best way to maintain application
integrity. Hybrid testing combines the power of traditional scripted testing with
automated model-based functional testing. Both methods ensure that your
system requirements are tested against all bugs and any hidden issues.

OpenText Functional Testing is perfect for hybrid testing. It boasts scalable,
intelligent, automated tests that cover your enterprise’s web, mobile, desktop,
mainframe, and composite applications.

MBT offers some
unique advantages.
These can include:
•	 Improved test coverage.

•	 Increased accuracy and
visibility.

•	 More collaboration
among your teams.

https://www.opentext.com/products/functional-testing

Copyright © 2025 Open Text • 02.25 | 262-000029-002

Next steps
Testing is an integral part of the software development process. It requires
sophisticated tools to ensure that your system requirements are tested against
all possible cases.

Remember, using either scripted or model-based testing will only get you so
far. You need a hybrid approach for effective all-around testing.

OpenText Functional Testing provides you with a hybrid model that captures
the best parts of both script-based and model-based testing—without leaving
blind spots that can impact your application’s integrity.

Testing can be tedious, complex, and difficult to carry out when it involves
many systems in an organization. To reduce these complexities, visit our
OpenText Functional Testing page to learn how to better plan your business
testing strategy.

Learn more.

Resources
OpenText CEO Mark
Barrenechea’s blog >

https://www.opentext.com/products/functional-testing
https://www.opentext.com/products/functional-testing-automation-solutions
https://blogs.opentext.com/category/ceo-blog/
https://blogs.opentext.com/category/ceo-blog/

	Script-based versus
 model-based functional
	Functional testing methods
	Script-based versus model-based
	Scripted testing
	Model-based testing
	Hybrid testing
	Next steps

Accessibility Report

		Filename:

		opentext-renaming-of-scriptbased-versus-model-based-functional-testing-wp-en-final.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

